domingo, 26 de agosto de 2018

Através do uso do microcatodo oco (um sanduíche com duas camadas metálicas intercaladas por uma fina camada de mica - com espessura d = 3 μm - perfurada com furo de diâmetro D = 200 μm e na pressão de 20 Torr) obtivemos um processo de verificação de emissão a frio de elétrons para um microcampo elétrico local muito intenso. O tunelamento quântico (ou efeito túnel), fenômeno explicado pela mecânica quântica, foi o mecanismo responsável pela extração de elétrons secundários da superfície catódica do dispositivo. De acordo com a teoria quântica, elétrons extraídos da superfície catódica (polarizada negativamente) sob a qual jaz um enorme gradiente de potencial, ou seja, um intenso campo elétrico local, propiciaram a formação de um microplasma no pertúito catódico. Após a aplicação da diferença de potencial de aproximadamente 460 V, elétrons secundários originados do catodo atravessaram a barreira de potencial na região do furo catódico.

e que terá variações conforme agentes, potenciais de isótopos e categorias de Graceli.


[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

tqoaiG =Trajetórias quântica oscilatórias aleatórias indeterminadas Graceli.



Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, DINÂMICO]..

sábado, 25 de agosto de 2018

quântica potencial interacional categorial Graceli [QPICG].

Se a bola não adquire energia cinética suficiente para transpor o Estádio, então, quanticamente ela teria que se transformar numa onda para poder ter alguma probabilidade de passar para o lado de fora. 

porem, no sistema de Graceli potencial categorial ela pode se transformar numa interação de energias e cargas, ou seja, não numa onda, mas numa energia que vai ativar outras energias do outro lado.

Nesta seção abordaremos a barreira de potencial e o efeito túnel ou tunelamento quântico, deduzindo a probabilidade de ocorrência deste. Uma barreira de potencial é uma região que possui uma energia potencial que impede a travessia de um lado para outro de uma partícula, a não ser que essa partícula possua energia E > Vm(de acordo com a visão clássica). Ou então, que a partícula, mesmo possuindo energia menor que o máximo da barreira, E < Vm, siga os preceitos da mecânica quântica e, assumindo um comportamento ondulatório, consiga sobrepujar a barreira pelo efeito de tunelamento quântico (ou efeito túnel) que lhe garanta uma probabilidade finita para isto. No caso clássico podemos imaginar, de uma maneira muito simples, que a partícula seja a bola de futebol da copa do mundo no Brasil e as paredes verticais do Estádio Arena Corinthians fazendo o papel da barreira de potencial. Se a bola não adquire energia cinética suficiente para transpor o Estádio, então, quanticamente ela teria que se transformar numa onda para poder ter alguma probabilidade de passar para o lado de fora. Se a bola não possuir energia cinética suficiente para vencer a barreira de energia potencial gravitacional relacionada à parede do Estádio, ela será refletida, de acordo com a visão clássica. Para explorarmos matematicamente o conceito de barreira de potencial e o fenômeno de tunelamento quântico, vamos considerar a partícula como sendo a bola de futebol e que a parede do estádio, com espessura d, tenha energia potencial máxima Vm escrita de acordo com o modelo de barreira de potencial retangular


Trans-intermecânica quântica Graceli transcendente e indeterminada –

Efeitos 11.068 a 11.071.


Efeito Graceli termo-fotoelétrico sobre mercúrio e alumínio.

Ao misturar os quatro por algum tempo vai haver novos tipos de materiais que se formarão dos dois: mercúrio e alumínio. Como também nos formatos.

Effects Graceli categories on quantum tunneling:

 where electrons have variations in the extraction of metallic surfaces under which there is a huge gradient of extraction potential and potential for action of electric, magnetic, radioactive, luminescent, dynamic, thermal and underpressure energies.

Quantum tunneling (or tunneling) is a phenomenon that provides numerous technological applications through the direct application of the concepts of quantum mechanics. According to this phenomenon, electrons can be extracted from metal surfaces under which there is a huge potential gradient, that is, an intense local electric field. Through an electric device known as hollow microcatode, two layers of metal intercalated by a thin layer of mica (with thickness d = 3 μm), drilled with a hole diameter of D = 200 μm and at 20 Torr pressure, allowed the emission to electron to a local microfield of approximately 15 V / nm. The polarized metals with an electric potential difference of approximately 390 V allowed the passage of the electrons through the potential barrier present in the region of the cathodic hole. The Fowler-Nordheim curve ratified the efficacy of the phenomenon in the generation of a microplasm in this hole, visible to the naked eye.




Trans-intermecânica quântica Graceli transcendente e indeterminada –

Efeitos 11.068 a 11.070.

Efeitos categorias Graceli sobre tunelamento quântico:

 onde os elétrons tem variações de extrações de superfícies metálicas sob as quais há um enorme gradiente de potencial de extração e potencial de ação de energias elétrica, magnética, radioativa, luminescente, dinâmica, térmica e sob pressões.

O tunelamento quântico (ou efeito túnel) é um fenômeno que proporciona inúmeras aplicações tecnológicas através da aplicação direta dos conceitos da mecânica quântica. De acordo com este fenômeno, elétrons podem ser extraídos de superfícies metálicas sob as quais há um enorme gradiente de potencial, ou seja, um intenso campo elétrico local. Através de um dispositivo elétrico conhecido como microcatodo oco, duas camadas de metal intercaladas por uma fina camada de mica (com espessura d = 3 μm), perfurada com furo de diâmetro D = 200 μm e na pressão de 20 Torr, propiciou a emissão a frio de elétrons para um microcampo elétrico local de aproximadamente 15 V/nm. Os metais polarizados com uma diferença de potencial elétrico de aproximadamente 390 V permitiram a passagem dos elétrons através da barreira de potencial presente na região do furo catódico. A curva de Fowler-Nordheim ratificou a eficácia do fenômeno na geração de um microplasma neste furo, visível a olho nu.



[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

tqoaiG =Trajetórias quântica oscilatórias aleatórias indeterminadas Graceli.



Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, DINÂMICO]..





Placa metálica que apresenta microprotrusões em sua superfície pode gerar gradientes de potencial elétrico intensos na região próxima a esta superfície, quando o metal é polarizado eletricamente. Estas pequenas imperfeições na superfície, invisíveis a olho nu, alteram a direção do campo elétrico local e aumentam sua intensidade devido ao efeito das pontas [1]. Para valores de intensidade do campo elétrico local da ordem de 105– 106 Vcm−1 (dependendo da função trabalho do metal usado), há uma probabilidade de ocorrer a “emissão a frio” de elétrons da superfície metálica polarizada negativamente (superfície catódica). A emissão a frio (ou “electron field emission”) é um processo que ocorre em superfícies metálicas através da aplicação de intenso campo elétrico, onde os elétrons são extraídos através do fenômeno conhecido por tunelamento quântico ou efeito túnel. Neste fenômeno os elétrons podem transpor um estado de energia classicamente proibido, podendo escapar de regiões cercadas por barreiras de potencial mesmo quando sua energia cinética é menor que a energia potencial da barreira [2]. Em muitas situações experimentais ou de interesse prático é interessante obter uma fonte de elétrons que gere uma densidade de corrente elétrica de uma maneira não intrusiva, como a emissão a frio. Por exemplo, a emissão termiônica de elétrons não é interessante em certos casos, pois o material a ser analisado sofre grande variação de temperatura, podendo perder suas propriedades físicas e químicas, principalmente se o material for termosensível, como o biomaterial. O microscópio de varredura por tunelamento (“Scanning Tunnelling Microscope”, STM), inventado em 1981 por G. Binning e H. Rohrer, financiados pela IBM de Zurique, foi idealizado para fornecer uma imagem da superfície investigada com resolução atômica. Este instrumento segue o princípio de emissão a frio de elétrons, que se utiliza do tunelamento quântico para propiciar a passagem do elétron pela barreira de potencial elétrico que existe entre a superfície a ser analisada e uma ponta metálica (sonda do aparelho) situada próxima a superfície. A aplicação de uma diferença de potencial (U) entre a sonda e a amostra torna factível o tunelamento quântico, através da criação de níveis desocupados de energia na superfície da amostra equivalentes com a energia potencial dos elétrons da sonda. Por exemplo, para um espaçamento d = 10 nm e para U = 10 V, a intensidade do campo elétrico será ε = U/d = 109 V/m, o suficiente para “extrair” elétrons do catodo (polo negativo, que pode ser o objeto ou a ponta condutora). O efeito túnel, segundo a mecânica quântica, surge como consequência da natureza ondulatória do elétron, pois este é descrito através de uma função de onda, obedecendo ao princípio da incerteza de Heisenberg.
Outra situação que podemos exemplificar ocorre na produção de plasmas em laboratório, onde a geração de elétrons secundários a frio favorece a manutenção da descarga elétrica com a respectiva redução da tensão elétrica, aumentando a eficiência de ionização do gás. A emissão a frio foi descoberta por Wood em 1897 e mais tarde Fowler e Nordheim [2] formularam uma teoria mais robusta baseada no modelo de elétrons livre de Sommerfeld. Murphy e Good [3] aplicaram esta teoria para superfícies metálicas e formularam a equação generalizada de Fowler-Nordheim para a relação entre a densidade de corrente elétrica e o campo elétrico local da superfície emissora de elétrons.
Em experimento recente, verificou-se que substâncias como o metanol (álcool COH4) podem ser formadas e destruídas em ambientes extremamente frios, como no espaço intergaláctico. A explicação para este fato vem do tunelamento quântico, pois se observou que mesmo submetido a temperaturas extremamente baixas, as reações químicas envolvendo o metanol ocorrem a uma taxa 50 vezes superior comparadas com as mesmas reações em condições normais [4]. Estas reações levam à produção de radicais hidroxilas, mesmo a −210 °C. Na pressão atmosférica, a ação da radiação eletromagnética no vapor de metanol não resulta em reações químicas favoráveis à produção destes radicais. Porém, no espaço intergaláctico, a pressão de aproximadamente 10−1 nTorr (ou 13 nPa) facilita os processos de tunelamento quântico, o que leva à explicação para a formação do radical metoxila, altamente reativo, detectado no espaço.
De acordo com o método de Fowler-Nordheim, através da construção de um gráfico que relaciona a densidade de corrente elétrica com a diferença de potencial elétrico aplicada, é possível estimar o fator de amplificação do campo elétrico e o campo elétrico local na superfície emissora. Esta tensão elétrica é aplicada nos terminais de dois eletrodos por onde se quer que ocorra a emissão a frio e a curva característica de tensão-corrente mostra de maneira direta que o fenômeno de tunelamento quântico ocorreu, pois em um dado instante e para uma determinada diferença de potencial a densidade de corrente aumenta exponencialmente, de acordo com a previsão teórica. Este crescimento exponencial está previsto na teoria quântica na dedução do coeficiente de transmissão do pacote de onda incidente na barreira de potencial, para o caso em que a energia deste pacote é menor do que o potencial máximo da barreira.
Neste trabalho iremos apresentar um experimento que detecta o tunelamento quântico de elétrons. A montagem consiste de duas chapas de metal separadas por uma fina folha de dielétrico, sendo que o conjunto todo é perfurado com um diâmetro de 200 μm. Após a polarização das folhas de metal, a emissão a frio de elétrons é registrada por um picoamperímetro, para um determinado valor da tensão elétrica aplicada e analisada através da teoria quântica relacionada ao fenômeno de tunelamento de elétrons, devido à presença de um intenso campo elétrico externo. Para facilitar a emissão de elétrons o conjunto é colocado numa câmara evacuada e o processo é monitorado com câmera fotográfica e medidor de pressão. Quando o número de elétrons atinge um valor ótimo, um pequeno plasma é aceso no interior do orifício catódico. O plasma é um gás ionizado que contém espécies químicas importantes para aplicações nos mais diversos ramos do conhecimento humano. Mais detalhes da descarga elétrica serão descritos na seção 3.
2.ABORDAGEM TEÓRICA
Nesta seção abordaremos a barreira de potencial e o efeito túnel ou tunelamento quântico, deduzindo a probabilidade de ocorrência deste. Uma barreira de potencial é uma região que possui uma energia potencial que impede a travessia de um lado para outro de uma partícula, a não ser que essa partícula possua energia E > Vm(de acordo com a visão clássica). Ou então, que a partícula, mesmo possuindo energia menor que o máximo da barreira, E < Vm, siga os preceitos da mecânica quântica e, assumindo um comportamento ondulatório, consiga sobrepujar a barreira pelo efeito de tunelamento quântico (ou efeito túnel) que lhe garanta uma probabilidade finita para isto. No caso clássico podemos imaginar, de uma maneira muito simples, que a partícula seja a bola de futebol da copa do mundo no Brasil e as paredes verticais do Estádio Arena Corinthians fazendo o papel da barreira de potencial. Se a bola não adquire energia cinética suficiente para transpor o Estádio, então, quanticamente ela teria que se transformar numa onda para poder ter alguma probabilidade de passar para o lado de fora. Se a bola não possuir energia cinética suficiente para vencer a barreira de energia potencial gravitacional relacionada à parede do Estádio, ela será refletida, de acordo com a visão clássica. Para explorarmos matematicamente o conceito de barreira de potencial e o fenômeno de tunelamento quântico, vamos considerar a partícula como sendo a bola de futebol e que a parede do estádio, com espessura d, tenha energia potencial máxima Vm escrita de acordo com o modelo de barreira de potencial retangular





V(x)=0,x<0V(x)=Vm,0<x<dV(x)=0,x>d.
[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].[agentes, energias e categorias de Graceli].